ULtiMATE System for Rapid Assembly of Customized TAL Effectors

نویسندگان

  • Junjiao Yang
  • Pengfei Yuan
  • Dingqiao Wen
  • Ying Sheng
  • Shiyou Zhu
  • Yuezhou Yu
  • Xiang Gao
  • Wensheng Wei
چکیده

Engineered TAL-effector nucleases (TALENs) and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector) system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER) to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA). The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TAL effectors from Xanthomonas: design of a programmable DNA-binding specificity

Xanthomonas spp. are Gram-negative bacteria with powerful molecular weapons to attack their plant hosts. Key for pathogenicity of Xanthomonas is a type III secretion system that injects a cocktail of effector proteins into plant cells to function as potent virulence factors. TAL (transcription activator-like) effectors from Xanthomonas function as transcriptional activators of plant genes in th...

متن کامل

Assembly of Designer TAL Effectors by Golden Gate Cloning

Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for en...

متن کامل

TAL effectors: function, structure, engineering and applications.

TAL effectors are proteins secreted by bacterial pathogens into plant cells, where they enter the nucleus and activate expression of individual genes. TAL effectors display a modular architecture that includes a central DNA-binding region comprising a tandem array of nearly identical repeats that are almost all 34 residues long. Residue number 13 in each TAL repeat (one of two consecutive polym...

متن کامل

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs ...

متن کامل

STAR: a simple TAL effector assembly reaction using isothermal assembly

Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables indivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013